HSP47: References

1. Nagata K. Hsp47: a collagen-specific molecular chaperone. Trends Biochem. Sci. 21 22-26 (1996).[PubMed]
2. Ito S. & NagataK. Biology of Hsp47 (Serpin H1) a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62 142-151 (2017).[PubMed]
3. Ishida Y. & NagataK. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol. 499 167-182 (2011).[PubMed]
4. Miyata S. MizunoT. KoyamaY. KatayamaT. & TohyamaM. The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition. PLoS ONE 8 e69732 (2013).[PubMed]
5. Breuza L. et al. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32 a new cycling protein that interacts with human Erv46. J. Biol. Chem. 279 47242-47253 (2004).[PubMed]
6. Fork C. HitzelJ. NicholsB.J. TikkanenR. & BrandesR.P. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res. Cardiol. 109 439 (2014).[PubMed]
7. Hattori T. et al. Downregulation of rheumatoid arthritis-related antigen RA-A47 (HSP47/colligin-2) in chondrocytic cell lines induces apoptosis and cell-surface expression of RA-A47 in association with CD9. J. Cell Physiol 202 191-204 (2005).[PubMed]
8. Hebert C. et al. Cell surface colligin/Hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J. Cell Biochem. 73 248-258 (1999).[PubMed]
9. Kaiser W.J. HolbrookL.M. TuckerK.L. StanleyR.G. & GibbinsJ.M. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J. Proteome Res. 8 2903-2914 (2009).[PubMed]
10. Kurkinen M. TaylorA. GarrelsJ.I. & HoganB.L. Cell surface-associated proteins which bind native type IV collagen or gelatin. J. Biol. Chem. 259 5915-5922 (1984).[PubMed]
11. Naba A. et al. Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J. Proteome Res. 16 3083-3091 (2017).[PubMed]
12. Chu H. et al. Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis. Protein Cell 6 589-598 (2015).[PubMed]
13. Kakugawa T. et al. Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones 18 581-590 (2013).[PubMed]
14. Kakugawa T. et al. Serum heat shock protein 47 levels are elevated in acute interstitial pneumonia. BMC Pulm. Med. 14 48 (2014).[PubMed]
15. Nagata K. SagaS. & YamadaK.M. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J. Cell Biol. 103 223-229 (1986).[PubMed]
16. Schultze H.E. GöllnerI. HeideK. SchönenbergerM. & SchwickG. Zur Kenntnis der a-Globuline des menschlichen Normalserums. Zeitschrift für Naturforschung B 10 463-473 (1955).[CrossRef]
17. Hunt L.T. & DayhoffM.O. A surprising new protein superfamily containing ovalbumin antithrombin-III and alpha 1-proteinase inhibitor. Biochem. Biophys. Res. Commun. 95 864-871 (1980).[PubMed]
18. Stein P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347 99-102 (1990).[PubMed]
19. Loebermann H. TokuokaR. DeisenhoferJ. & HuberR. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177 531-557 (1984).[PubMed]
20. Silverman G.A. et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution mechanism of inhibition novel functions and a revised nomenclature. J. Biol. Chem. 276 33293-33296 (2001).[PubMed]
21. Cates G.A. NandanD. BrickendenA.M. & SanwalB.D. Differentiation defective mutants of skeletal myoblasts altered in a gelatin-binding glycoprotein. Biochem. Cell Biol. 65 767-775 (1987).[PubMed]
22. Saga S. NagataK. ChenW.T. & YamadaK.M. pH-dependent function purification and intracellular location of a major collagen-binding glycoprotein. J. Cell Biol. 105 517-527 (1987).[PubMed]
23. Koide T. et al. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins. J. Biol. Chem. 281 11177-11185 (2006).[PubMed]
24. Widmer C. et al. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc. Natl. Acad. Sci. U. S. A 109 13243-13247 (2012).[PubMed]
25. Yagi-Utsumi M. et al. NMR and mutational identification of the collagen-binding site of the chaperone Hsp47. PLoS ONE 7 e45930 (2012).[PubMed]
26. Satoh M. HirayoshiK. YokotaS. HosokawaN. & NagataK. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J. Cell Biol. 133 469-483 (1996).[PubMed]
27. Oecal S. et al. The pH-dependent client release from the collagen-specific chaperone HSP47 is triggered by a tandem histidine pair. J. Biol. Chem. 291 12612-12626 (2016).[PubMed]
28. Hirayoshi K. et al. HSP47: a tissue-specific transformation-sensitive collagen-binding heat shock protein of chicken embryo fibroblasts. Mol. Cell Biol. 11 4036-4044 (1991).[PubMed]
29. Hughes R.C. TaylorA. SageH. & HoganB.L. Distinct patterns of glycosylation of colligin a collagen-binding glycoprotein and SPARC (osteonectin) a secreted Ca2+-binding glycoprotein. Evidence for the localisation of colligin in the endoplasmic reticulum. Eur. J. Biochem. 163 57-65 (1987).[PubMed]
30. Zhou H. et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 12 260-271 (2013).[PubMed]
31. Gao C.X. et al. Bisecting GlcNAc mediates the binding of annexin V to Hsp47. Glycobiology 15 1067-1075 (2005).[PubMed]
32. Lin M.C. et al. Rosuvastatin modulates the post-translational acetylome in endothelial cells. Acta Cardiol. Sin. 30 67-73 (2014).[PubMed]
33. Park J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50 919-930 (2013).[PubMed]
34. Heit C. et al. Update of the human and mouse SERPIN gene superfamily. Hum. Genomics 7 22 (2013).[PubMed]
35. Dafforn T.R. DellaM. & MillerA.D. The molecular interactions of heat shock protein 47 (Hsp47) and their implications for collagen biosynthesis. J. Biol. Chem. 276 49310-49319 (2001).[PubMed]
36. Clarke E.P. & SanwalB.D. Cloning of a human collagen-binding protein and its homology with rat gp46 chick hsp47 and mouse J6 proteins. Biochim. Biophys. Acta 1129 246-248 (1992).[PubMed]
37. Nagai N. TetuyaY. HosokawaN. & NagataK. The human genome has only one functional hsp47 gene (CBP2) and a pseudogene (pshsp47). Gene 227 241-248 (1999).[PubMed]
38. Hosokawa N. TakechiH. YokotaS. HirayoshiK. & NagataK. Structure of the gene encoding the mouse 47-kDa heat-shock protein (HSP47). Gene 126 187-193 (1993).[PubMed]
39. Clemmensen S.N. et al. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis. Eur. J. Haematol. 86 517-530 (2011).[PubMed]
40. Marques P.I. et al. SERPINA2 is a novel gene with a divergent function from SERPINA1. PLoS ONE 8 e66889 (2013).[PubMed]
41. Rubin H. et al. Cloning expression purification and biological activity of recombinant native and variant human alpha 1-antichymotrypsins. J. Biol. Chem. 265 1199-1207 (1990).[PubMed]
42. Chao J. SchmaierA. ChenL.M. YangZ. & ChaoL. Kallistatin a novel human tissue kallikrein inhibitor: levels in body fluids blood cells
43. Elisen M.G. von dem BorneP.A. BoumaB.N. & MeijersJ.C. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma. Blood 91 1542-1547 (1998).[PubMed]
44. Nishioka J. NingM. HayashiT. & SuzukiK. Protein C inhibitor secreted from activated platelets efficiently inhibits activated protein C on phosphatidylethanolamine of platelet membrane and microvesicles. J. Biol. Chem. 273 11281-11287 (1998).[PubMed]
45. Stief T.W. RadtkeK.P. & HeimburgerN. Inhibition of urokinase by protein C-inhibitor (PCI). Evidence for identity of PCI and plasminogen activator inhibitor 3. Biol. Chem. Hoppe Seyler 368 1427-1433 (1987).[PubMed]
46. Zhou A. et al. The S-to-R transition of corticosteroid-binding globulin and the mechanism of hormone release. J. Mol. Biol. 380 244-251 (2008).[PubMed]
47. Domingues R. FontP. SobrinhoL. & BugalhoM.J. A novel variant in Serpina7 gene in a family with thyroxine-binding globulin deficiency. Endocrine 36 83-86 (2009).[PubMed]
48. Doolittle R.F. Angiotensinogen is related to the antitrypsin-antithrombin-ovalbumin family. Science 222 417-419 (1983).[PubMed]
49. Stein P.E. TewkesburyD.A. & CarrellR.W. Ovalbumin and angiotensinogen lack serpin S-R conformational change. Biochem. J. 262 103-107 (1989).[PubMed]
50. Paterson M.A. HorvathA.J. PikeR.N. & CoughlinP.B. Molecular characterization of centerin a germinal centre cell serpin. Biochem. J. 405 489-494 (2007).[PubMed]
51. Han X. FiehlerR. & BrozeG.J. Jr. Characterization of the protein Z-dependent protease inhibitor. Blood 96 3049-3055 (2000).[PubMed]
52. Gettins P.G. & OlsonS.T. Inhibitory serpins. New insights into their folding polymerization regulation and clearance. Biochem. J. 473 2273-2293 (2016).[PubMed]
53. Fagerberg L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 13 397-406 (2014).[PubMed]
54. Hida K. et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. U. S. A 102 10610-10615 (2005).[PubMed]
55. Vidalino L. et al. SERPINB3 apoptosis and autoimmunity. Autoimmun. Rev. 9 108-112 (2009).[PubMed]
56. Sivaprasad U. et al. A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. J. Allergy Clin. Immunol. 127 254-61 261 (2011).[PubMed]
57. Miyata T. et al. Overexpression of the serpin megsin induces progressive mesangial cell proliferation and expansion. J. Clin. Invest 109 585-593 (2002).[PubMed]
58. Gatto M. et al. Serpins immunity and autoimmunity: old molecules new functions. Clin. Rev. Allergy Immunol. 45 267-280 (2013).[PubMed]
59. Tsujimoto M. et al. Purification cDNA cloning and characterization of a new serpin with megakaryocyte maturation activity. J. Biol. Chem. 272 15373-15380 (1997).[PubMed]
60. Cooley J. TakayamaT.K. ShapiroS.D. SchechterN.M. & Remold-O’DonnellE. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry 40 15762-15770 (2001).[PubMed]
61. Genton C. KruithofE.K. & SchleuningW.D. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells. J. Cell Biol. 104 705-712 (1987).[PubMed]
62. Suminami Y. et al. Inhibition of apoptosis in human tumour cells by the tumour-associated serpin SCC antigen-1. Br. J. Cancer 82 981-989 (2000).[PubMed]
63. de Koning P.J. et al. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS ONE 6 e22645 (2011).[PubMed]
64. Cataltepe S. et al. Co-expression of the squamous cell carcinoma antigens 1 and 2 in normal adult human tissues and squamous cell carcinomas. J. Histochem. Cytochem. 48 113-122 (2000).[PubMed]
65. Law R.H. et al. The high resolution crystal structure of the human tumor suppressor maspin reveals a novel conformational switch in the G-helix. J. Biol. Chem. 280 22356-22364 (2005).[PubMed]
66. Scott F.L. et al. The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease cathepsin G. Blood 93 2089-2097 (1999).[PubMed]
67. Sirmaci A. et al. A truncating mutation in SERPINB6 is associated with autosomal-recessive nonsyndromic sensorineural hearing loss. Am. J. Hum. Genet. 86 797-804 (2010).[PubMed]
68. Xia Y. et al. Overexpression of megsin induces mesangial cell proliferation and excretion of type IV collagen in vitro. Cell Immunol. 271 413-417 (2011).[PubMed]
69. El Haddad N. et al. The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. J. Immunol. 187 2252-2260 (2011).[PubMed]
70. Jiang X. OrrB.A. KranzD.M. & ShapiroD.J. Estrogen induction of the granzyme B inhibitor proteinase inhibitor 9 protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology 147 1419-1426 (2006).[PubMed]
71. Schleef R.R. & ChuangT.L. Protease inhibitor 10 inhibits tumor necrosis factor alpha -induced cell death. Evidence for the formation of intracellular high M(r) protease inhibitor 10-containing complexes. J. Biol. Chem. 275 26385-26389 (2000).[PubMed]
72. Riewald M. & SchleefR.R. Molecular cloning of bomapin (protease inhibitor 10) a novel human serpin that is expressed specifically in the bone marrow. J. Biol. Chem. 270 26754-26757 (1995).[PubMed]
73. Askew D.J. et al. SERPINB11 is a new noninhibitory intracellular serpin. Common single nucleotide polymorphisms in the scaffold impair conformational change. J. Biol. Chem. 282 24948-24960 (2007).[PubMed]
74. Askew Y.S. et al. SERPINB12 is a novel member of the human ov-serpin family that is widely expressed and inhibits trypsin-like serine proteinases. J. Biol. Chem. 276 49320-49330 (2001).[PubMed]
75. Welss T. et al. Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry 42 7381-7389 (2003).[PubMed]
76. Szabo R. Netzel-ArnettS. HobsonJ.P. AntalisT.M. & BuggeT.H. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem. J. 390 231-242 (2005).[PubMed]
77. Van Deerlin V. & TollefsenD.M. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans. J. Biol. Chem. 266 20223-20231 (1991).[PubMed]
78. Baglin T.P. CarrellR.W. ChurchF.C. EsmonC.T. & HuntingtonJ.A. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc. Natl. Acad. Sci. U. S. A 99 11079-11084 (2002).[PubMed]
79. Ehrlich H.J. et al. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J. Biol. Chem. 265 13029-13035 (1990).[PubMed]
80. Ginsburg D. et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J. Clin. Invest 78 1673-1680 (1986).[PubMed]
81. Pannekoek H. et al. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J. 5 2539-2544 (1986).[PubMed]
82. Baker J.B. LowD.A. SimmerR.L. & CunninghamD.D. Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell 21 37-45 (1980).[PubMed]
83. Lino M.M. et al. Mice lacking protease nexin-1 show delayed structural and functional recovery after sciatic nerve crush. J. Neurosci. 27 3677-3685 (2007).[PubMed]
84. Becerra S.P. et al. Overexpression of fetal human pigment epithelium-derived factor in Escherichia coli. A functionally active neurotrophic factor. J. Biol. Chem. 268 23148-23156 (1993).[PubMed]
85. Becerra S.P. SagastiA. SpinellaP. & NotarioV. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J. Biol. Chem. 270 25992-25999 (1995).[PubMed]
86. Dawson D.W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285 245-248 (1999).[PubMed]
87. Davis A.E.3rd C1 inhibitor and hereditary angioneurotic edema. Annu. Rev. Immunol. 6 595-628 (1988).[PubMed]
88. Bock S.C. et al. Human C1 inhibitor: primary structure cDNA cloning and chromosomal localization. Biochemistry 25 4292-4301 (1986).[PubMed]
89. Christiansen H.E. et al. Homozygosity for a missense mutation in SERPINH1 which encodes the collagen chaperone protein HSP47 results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86 389-398 (2010).[PubMed]
90. Osterwalder T. et al. The axonally secreted serine proteinase inhibitor neuroserpin inhibits plasminogen activators and plasmin but not thrombin. J. Biol. Chem. 273 2312-2321 (1998).[PubMed]
91. Schrimpf S.P. et al. Human neuroserpin (PI12): cDNA cloning and chromosomal localization to 3q26. Genomics 40 55-62 (1997).[PubMed]
92. Krueger S.R. et al. Expression of neuroserpin an inhibitor of tissue plasminogen activator in the developing and adult nervous system of the mouse. J. Neurosci. 17 8984-8996 (1997).[PubMed]
93. Davis R.L. et al. Familial encephalopathy with neuroserpin inclusion bodies. Am. J. Pathol. 155 1901-1913 (1999).[PubMed]
94. Rajaraman P. et al. Common variation in genes related to innate immunity and risk of adult glioma. Cancer Epidemiol. Biomarkers Prev. 18 1651-1658 (2009).[PubMed]
95. Ozaki K. et al. Isolation and characterization of a novel human pancreas-specific gene pancpin that is down-regulated in pancreatic cancer cells. Genes Chromosomes Cancer 22 179-185 (1998).[PubMed]
96. Higgins W.J. GrehanG.T. WynneK.J. & WorrallD.M. SerpinI2 (pancpin) is an inhibitory serpin targeting pancreatic elastase and chymotrypsin. Biochim. Biophys. Acta Proteins Proteom. 1865 195-200 (2017).[PubMed]
97. Bornhorst J.A. GreeneD.N. AshwoodE.R. & GrenacheD.G. a1-Antitrypsin phenotypes and associated serum protein concentrations in a large clinical population. Chest 143 1000-1008 (2013).[PubMed]
98. Sabina J. & TobiasW. Augmentation therapy with alpha1-antitrypsin: novel perspectives. Cardiovasc. Hematol. Disord. Drug Targets 13 90-98 (2013).[PubMed]
99. Saunders D.N. et al. A novel SERPINA1 mutation causing serum alpha(1)-antitrypsin deficiency. PLoS ONE 7 e51762 (2012).[PubMed]
100. Almawi W.Y. Al-ShaikhF.S. MelemedjianO.K. & AlmawiA.W. Protein Z an anticoagulant protein with expanding role in reproductive biology. Reproduction 146 R73-R80 (2013).[PubMed]
101. Maruyama K. et al. Antithrombin deficiency in three Japanese families: one novel and two reported point mutations in the antithrombin gene. Thromb. Res. 132 e118-e123 (2013).[PubMed]
102. Homan E.P. et al. Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J. Bone Miner. Res. 26 2798-2803 (2011).[PubMed]
103. Levy N.J. RameshN. CicardiM. HarrisonR.A. & DavisA.E.3rd Type II hereditary angioneurotic edema that may result from a single nucleotide change in the codon for alanine-436 in the C1 inhibitor gene. Proc. Natl. Acad. Sci. U. S. A 87 265-268 (1990).[PubMed]
104. Liu Y. et al. Depletion of endogenous kallistatin exacerbates renal and cardiovascular oxidative stress inflammation and organ remodeling. Am. J. Physiol Renal Physiol 303 F1230-F1238 (2012).[PubMed]
105. Gooptu B. et al. Inactive conformation of the serpin a1-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc. Natl. Acad. Sci. U. S. A 97 67-72 (2000).[PubMed]
106. Teshigawara S. et al. Serum vaspin concentrations are closely related to insulin resistance and rs77060950 at SERPINA12 genetically defines distinct group with higher serum levels in Japanese population. J. Clin. Endocrinol. Metab 97 E1202-E1207 (2012).[PubMed]
107. Paterson M.A. HoskingP.S. & CoughlinP.B. Expression of the serpin centerin defines a germinal center phenotype in B-cell lymphomas. Am. J. Clin. Pathol. 130 117-126 (2008).[PubMed]
108. Vecchi M. et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 27 2148-2158 (2008).[PubMed]
109. Cao D. et al. Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod. Pathol. 20 570-578 (2007).[PubMed]
110. Zou Z. et al. Maspin a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263 526-529 (1994).[PubMed]
111. Davis R.L. et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 401 376-379 (1999).[PubMed]
112. Kumar A. & BhandariA. Urochordate serpins are classified into six groups encoded by exon-intron structures microsynteny and Bayesian phylogenetic analyses. J. Genomics 2 131-140 (2014).[PubMed]
113. Kumar A. BhandariA. SardeS.J. & GoswamiC. Ancestry & molecular evolutionary analyses of heat shock protein 47 kDa (HSP47/SERPINH1). Sci. Rep. 7 10394 (2017).[PubMed]
114. Reichhart J.M. Tip of another iceberg: Drosophila serpins. Trends Cell Biol. 15 659-665 (2005).[PubMed]
115. Pak S.C. et al. SRP-2 is a cross-class inhibitor that participates in postembryonic development of the nematode Caenorhabditis elegans: initial characterization of the clade L serpins. J. Biol. Chem. 279 15448-15459 (2004).[PubMed]
116. Luke C.J. et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130 1108-1119 (2007).[PubMed]
117. Meekins D.A. KanostM.R. & MichelK. Serpins in arthropod biology. Semin. Cell Dev. Biol. 62 105-119 (2017).[PubMed]
118. Iwanaga S. & KawabataS. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front. Biosci. 3 D973-D984 (1998).[PubMed]
119. Hashimoto C. KimD.R. WeissL.A. MillerJ.W. & MorisatoD. Spatial regulation of developmental signaling by a serpin. Dev. Cell 5 945-950 (2003).[PubMed]
120. Ligoxygakis P. RothS. & ReichhartJ.M. A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr. Biol. 13 2097-2102 (2003).[PubMed]
121. Irving J.A. PikeR.N. LeskA.M. & WhisstockJ.C. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 10 1845-1864 (2000).[PubMed]
122. Hejgaard J. RasmussenS.K. BrandtA. & SvendsenI. Sequence homology between barley endosperm protein Z and protease inhibitors of the a1-antitrypsin family. FEBS Lett. 180 89-94 (1985).[CrossRef]
123. Roberts T.H. & HejgaardJ. Serpins in plants and green algae. Funct. Integr. Genomics 8 1-27 (2008).[PubMed]
124. Hejgaard J. & HaugeS. Serpins of oat (Avena sativa) grain with distinct reactive centres and inhibitory specificity. Physiol. Plant 116 155-163 (2002).[PubMed]
125. Dahl S.W. RasmussenS.K. & HejgaardJ. Heterologous expression of three plant serpins with distinct inhibitory specificities. J. Biol. Chem. 271 25083-25088 (1996).[PubMed]
126. Dahl S.W. RasmussenS.K. PetersenL.C. & HejgaardJ. Inhibition of coagulation factors by recombinant barley serpin BSZx. FEBS Lett. 394 165-168 (1996).[PubMed]
127. Vercammen D. et al. Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J. Mol. Biol. 364 625-636 (2006).[PubMed]
128. Lampl N. et al. Arabidopsis AtSerpin1 crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J. Biol. Chem. 285 13550-13560 (2010).[PubMed]
129. Ahn J.W. AtwellB.J. & RobertsT.H. Serpin genes AtSRP2 and AtSRP3 are required for normal growth sensitivity to a DNA alkylating agent in Arabidopsis. BMC Plant Biol. 9 52 (2009).[PubMed]
130. Østergaard H. RasmussenS.K. RobertsT.H. & HejgaardJ. Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins. Cloning and characterization of five major molecular forms. J. Biol. Chem. 275 33272-33279 (2000).[PubMed]
131. Irving J.A. et al. Serpins in prokaryotes. Mol. Biol. Evol. 19 1881-1890 (2002).[PubMed]
132. Fulton K.F. et al. The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition. J. Biol. Chem. 280 8435-8442 (2005).[PubMed]
133. Irving J.A. et al. The 1.5 Å crystal structure of a prokaryote serpin: controlling conformational change in a heated environment. Structure 11 387-397 (2003).[PubMed]
134. Kang S. BarakY. LamedR. BayerE.A. & MorrisonM. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol. Microbiol. 60 1344-1354 (2006).[PubMed]
135. Turner P.C. & MoyerR.W. Poxvirus immune modulators: functional insights from animal models. Virus Res. 88 35-53 (2002).[PubMed]
136. Rahman M.M. Methods for identifying virus-derived serpins. Methods Mol. Biol. 1826 73-86 (2018).[PubMed]
137. Jiang J. et al. Induction of indefinite cardiac allograft survival correlates with toll-like receptor 2 and 4 downregulation after serine protease inhibitor-1 (Serp-1) treatment. Transplantation 84 1158-1167 (2007).[PubMed]
138. Richardson J. ViswanathanK. & LucasA. Serpins the vasculature and viral therapeutics. Front Biosci. 11 1042-1056 (2006).[PubMed]
139. Renatus M. et al. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure 8 789-797 (2000).[PubMed]
140. Davids J.W. ElthaherT.S.H. NakaiA. NagataK. & MillerA.D. Modeling the three-dimensional structure of serpin/molecular chaperone HSP47. Bioorg. Chem. 23 427-438 (1995).[CrossRef]
141. Yamasaki M. LiW. JohnsonD.J. & HuntingtonJ.A. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455 1255-1258 (2008).[PubMed]
142. Yamasaki M. SendallT.J. PearceM.C. WhisstockJ.C. & HuntingtonJ.A. Molecular basis of a1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 12 1011-1017 (2011).[PubMed]
143. Koide T. TakaharaY. AsadaS. & NagataK. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J. Biol. Chem. 277 6178-6182 (2002).[PubMed]
144. Tasab M. BattenM.R. & BulleidN.J. Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J. 19 2204-2211 (2000).[PubMed]
145. Tasab M. JenkinsonL. & BulleidN.J. Sequence-specific recognition of collagen triple helices by the collagen-specific molecular chaperone HSP47. J. Biol. Chem. 277 35007-35012 (2002).[PubMed]
146. Koide T. AsoA. YorihuziT. & NagataK. Conformational requirements of collagenous peptides for recognition by the chaperone protein HSP47. J. Biol. Chem. 275 27957-27963 (2000).[PubMed]
147. Ono T. MiyazakiT. IshidaY. UehataM. & NagataK. Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J. Biol. Chem. 287 6810-6818 (2012).[PubMed]
148. Koide T. et al. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation. J. Biol. Chem. 281 3432-3438 (2006).[PubMed]
149. Thomson C.A. TenniR. & AnanthanarayananV.S. Mapping Hsp47 binding site(s) using CNBr peptides derived from type I and type II collagen. Protein Sci. 12 1792-1800 (2003).[PubMed]
150. Taguchi T. & RazzaqueM.S. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol. Med. 13 45-53 (2007).[PubMed]
151. Razzaque M.S. FosterC.S. & AhmedA.R. Role of collagen-binding heat shock protein 47 and transforming growth factor-beta1 in conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol. Vis. Sci. 44 1616-1621 (2003).[PubMed]
152. Kakugawa T. et al. Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia. Respir. Res. 6 57 (2005).[PubMed]
153. Brown K.E. BroadhurstK.A. MathahsM.M. BruntE.M. & SchmidtW.N. Expression of HSP47 a collagen-specific chaperone in normal and diseased human liver. Lab. Invest. 85
154. Amenomori M. et al. HSP47 in lung fibroblasts is a predictor of survival in fibrotic nonspecific interstitial pneumonia. Respir. Med. 104 895-901 (2010).[PubMed]
155. Razzaque M.S. HossainM.A. KohnoS. & TaguchiT. Bleomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP) 47. Virchows Arch. 432 455-460 (1998).[PubMed]
156. Nakai A. SatohM. HirayoshiK. & NagataK. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J. Cell Biol. 117 903-914 (1992).[PubMed]
157. Calderwood S.K. GongJ. & MurshidA. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front. Immunol. 7 159 (2016).[PubMed]
158. Taniguchi M. & YoshidaH. TFE3 HSP47 and CREB3 pathways of the mammalian Golgi stress response. Cell Struct. Funct. 42 27-36 (2017).[PubMed]
159. Leeson T.S. & LeesonC.R. The fine structure of Brunner’s glands in man. J. Anat. 103 263-276 (1968).[PubMed]
160. Jackson C.L. Mechanisms of transport through the Golgi complex. J. Cell Sci. 122 443-452 (2009).[PubMed]
161. Huet G. et al. GalNAc-a-O-benzyl inhibits NeuAca2-3 glycosylation and blocks the intracellular transport of apical glycoproteins and mucus in differentiated HT-29 cells. J. Cell Biol. 141 1311-1322 (1998).[PubMed]
162. Tartakoff A.M. Perturbation of the structure and function of the Golgi complex by monovalent carboxylic ionophores. Methods Enzymol. 98 47-59 (1983).[PubMed]
163. Sasikumar P. et al. The chaperone protein HSP47: a platelet collagen binding protein that contributes to thrombosis and hemostasis. J. Thromb. Haemost. 16 946-959 (2018).[PubMed]
164. Ibrahim F.H. Abd LatipN. & Abdul-WahabM.F. Heat shock protein 47 (HSP47). In: eLS pp. 1-7 John Wiley & Sons Ltd. Chichester (2018).[CrossRef]
165. Ikegawa S. SudoK. OkuiK. & NakamuraY. Isolation characterization and chromosomal assignment of human colligin-2 gene (CBP2). Cytogenet. Cell Genet. 71 182-186 (1995).[PubMed]
166. Huang X. GollinS.M. RajaS. & GodfreyT.E. High-resolution mapping of the 11q13 amplicon and identification of a gene TAOS1 that is amplified and overexpressed in oral cancer cells. Proc. Natl. Acad. Sci. U. S. A 99 11369-11374 (2002).[PubMed]
167. Zhu J. et al. Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network. Cancer Res. 75 1580-1591 (2015).[PubMed]
168. Jiang X. ZhouT. WangZ. QiB. & XiaH. HSP47 promotes glioblastoma stemlike cell survival by modulating tumor microenvironment extracellular matrix through TGF-b pathway. ACS Chem. Neurosci. 8 128-134 (2017).[PubMed]
169. Shamovsky I. & NudlerE. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci. 65 855-861 (2008).[PubMed]
170. Pirkkala L. NykanenP. & SistonenL. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15 1118-1131 (2001).[PubMed]
171. Åkerfelt M. MorimotoR.I. & SistonenL. Heat shock factors: integrators of cell stress development and lifespan. Nat. Rev. Mol. Cell Biol. 11 545-555 (2010).[PubMed]
172. Mason P.B.Jr. & LisJ.T. Cooperative and competitive protein interactions at the hsp70 promoter. J. Biol. Chem. 272 33227-33233 (1997).[PubMed]
173. Westwood J.T. ClosJ. & WuC. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353 822-827 (1991).[PubMed]
174. Wang S.Y. Structure of the gene and its retinoic acid-regulatory region for murine J6 serpin. An F9 teratocarcinoma cell retinoic acid-inducible protein. J. Biol. Chem. 267 15362-15366 (1992).[PubMed]
175. Ikegawa S. & NakamuraY. Structure of the gene encoding human colligin-2 (CBP2). Gene 194 301-303 (1997).[PubMed]
176. Sasaki H. et al. Induction of heat shock protein 47 synthesis by TGF-b and IL-1b via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J. Immunol. 168 5178-5183 (2002).[PubMed]
177. Takechi H. et al. Molecular cloning of a mouse 47-kDa heat-shock protein (HSP47) a collagen-binding stress protein and its expression during the differentiation of F9 teratocarcinoma cells. Eur. J. Biochem. 206 323-329 (1992).[PubMed]
178. Ratziu V. et al. Zf9 a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc. Natl. Acad. Sci. U. S. A 95 9500-9505 (1998).[PubMed]
179. Oguro A. et al. The molecular chaperone HSP47 rapidly senses gravitational changes in myoblasts. Genes Cells 11 1253-1265 (2006).[PubMed]
180. Spizzo R. NicolosoM.S. CroceC.M. & CalinG.A. SnapShot: microRNAs in cancer. Cell 137 586-586.e1 (2009).[PubMed]
181. Visone R. & CroceC.M. MiRNAs and cancer. Am. J. Pathol. 174 1131-1138 (2009).[PubMed]
182. Radons J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 19 1-13 (2014).[PubMed]
183. Yamamoto N. et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int. J. Oncol. 43 1855-1863 (2013).[PubMed]
184. Zhao D. et al. Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J. Neurooncol. 118 39-47 (2014).[PubMed]
185. Zhang Y. et al. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochem. Biophys. Res. Commun. 446 940-944 (2014).[PubMed]
186. Zhu Y. et al. Overexpression of miR-29b reduces collagen biosynthesis by inhibiting heat shock protein 47 during skin wound healing. Transl. Res. 178 38-53 (2016).[PubMed]
187. Kamikawaji K. et al. Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J. Hum. Genet. 61 985-993 (2016).[PubMed]
188. Yang Q. et al. Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma. Cancer Res. 64 4531-4538 (2004).[PubMed]
189. Uchiyama T. et al. HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190 321-329 (2007).[PubMed]
190. Söderhäll C. et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol. 5 e242 (2007).[PubMed]
191. Engel J. & ProckopD.J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu. Rev. Biophys. Biophys. Chem. 20 137-152 (1991).[PubMed]
192. Bourhis J.M. et al. Structural basis of fibrillar collagen trimerization and related genetic disorders. Nat. Struct. Mol. Biol. 19 1031-1036 (2012).[PubMed]
193. Heard M.E. et al. Sc65-null mice provide evidence for a novel endoplasmic reticulum Complex regulating collagen lysyl hydroxylation. PLoS Genet. 12 e1006002 (2016).[PubMed]
194. Wilson R. LeesJ.F. & BulleidN.J. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 273 9637-9643 (1998).[PubMed]
195. Yamauchi M. NoyesC. KubokiY. & MechanicG.L. Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type I collagen. Proc. Natl. Acad. Sci. U. S. A 79 7684-7688 (1982).[PubMed]
196. Olsen B.R. Collagen biosynthesis. In: Cell Biology of Extracellular Matrix (ed. HayE.D.) pp.139-177 Plenum Press New York (1981).
197. Aigner T. & StoveJ. Collagens – major component of the physiological cartilage matrix major target of cartilage degeneration major tool in cartilage repair. Adv. Drug Deliv. Rev. 55 1569-1593 (2003).[PubMed]
198. Kobayashi T. & UchiyamaM. Effect of HSP47 expression levels on heterotrimer formation among type IV collagen a3 a4 and a5 chains. Biomed. Res. 31 371-377 (2010).[PubMed]
199. Thomson C.A. & AnanthanarayananV.S. Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro. Biochem. J. 349 Pt 3 877-883 (2000).[PubMed]
200. Jain N. BrickendenA. BallE.H. & SanwalB.D. Inhibition of procollagen I degradation by colligin: a collagen-binding serpin. Arch. Biochem. Biophys. 314 23-30 (1994).[PubMed]
201. Makareeva E. & LeikinS. Procollagen triple helix assembly: an unconventional chaperone-assisted folding paradigm. PLoS ONE 2 e1029 (2007).[PubMed]
202. Ishikawa Y. ItoS. NagataK. SakaiL.Y. & BachingerH.P. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc. Natl. Acad. Sci. U. S. A 113 E6036-E6044 (2016).[PubMed]
203. Rauch F. LalicL. RoughleyP. & GlorieuxF.H. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur. J. Hum. Genet. 18 642-647 (2010).[PubMed]
204. Forlino A. & MariniJ.C. Osteogenesis imperfecta. Lancet 387 1657-1671 (2016).[PubMed]
205. Rauch F. LalicL. RoughleyP. & GlorieuxF.H. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J. Bone Miner. Res. 25 1367-1374 (2010).[PubMed]
206. Duran I. et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum. Mol. Genet. 24 1918-1928 (2015).[PubMed]
207. Drögemüller C. et al. A missense mutation in the SERPINH1 gene in Dachshunds with osteogenesis imperfecta. PLoS Genet. 5 e1000579 (2009).[PubMed]
208. Marshall C. LopezJ. CrookesL. PollittR.C. & BalasubramanianM. A novel homozygous variant in SERPINH1 associated with a severe lethal presentation of osteogenesis imperfecta with hydranencephaly. Gene 595 49-52 (2016).[PubMed]
209. Wang H. et al. A functional SNP in the promoter of the SERPINH1 gene increases risk of preterm premature rupture of membranes in African Americans. Proc. Natl. Acad. Sci. U. S. A 103 13463-13467 (2006).[PubMed]
210. Friedman S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134 1655-1669 (2008).[PubMed]
211. Kakugawa T. et al. Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Arch. 456 309-315 (2010).[PubMed]
212. Razzaque M.S. NazneenA. & TaguchiT. Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod. Pathol. 11 1183-1188 (1998).[PubMed]
213. Westra I.M. et al. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis. Toxicol. In Vitro 35 77-85 (2016).[PubMed]
214. Kitamura H. et al. Role of heat shock protein 47 in intestinal fibrosis of experimental colitis. Biochem. Biophys. Res. Commun. 404 599-604 (2011).[PubMed]
215. Razzaque M.S. & TaguchiT. Collagen-binding heat shock protein (HSP) 47 expression in anti-thymocyte serum (ATS)-induced glomerulonephritis. J. Pathol. 183 24-29 (1997).[PubMed]
216. Sato Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26 431-442 (2008).[PubMed]
217. Hagiwara S. et al. Heat shock protein 47 (HSP47) antisense oligonucleotides reduce cardiac remodeling and improve cardiac function in a rat model of myocardial infarction. Thorac. Cardiovasc. Surg. 59 386-392 (2011).[PubMed]
218. Zhou J. et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 110 207-213 (2004).[PubMed]
219. Yokota S. et al. Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem. Biophys. Res. Commun. 303 413-418 (2003).[PubMed]
220. Izquierdo E. et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 63 2575-2583 (2011).[PubMed]
221. Serý O. PovovaJ. MisekI. PesakL. & JanoutV. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 51 1-9 (2013).[PubMed]
222. Calderon-Garcidueñas A.L. & DuyckaertsC. Alzheimer disease. Handb. Clin. Neurol. 145 325-337 (2017).[PubMed]
223. Sierra-Fonseca J.A. & GosselinkK.L. Tauopathy and neurodegeneration: a role for stress. Neurobiol. Stress 9 105-112 (2018).[PubMed]
224. Bianchi F.T. et al. The collagen chaperone HSP47 is a new interactor of APP that affects the levels of extracellular beta-amyloid peptides. PLoS ONE 6 e22370 (2011).[PubMed]
225. Qi Y. et al. SERPINH1 overexpression in clear cell renal cell carcinoma: association with poor clinical outcome and its potential as a novel prognostic marker. J. Cell Mol. Med. 22 1224-1235 (2018).[PubMed]
226. Lee H.W. et al. Overexpression of HSP47 in esophageal squamous cell carcinoma: clinical implications and functional analysis. Dis. Esophagus. 29 848-855 (2016).[PubMed]
227. Mori K. et al. Proteomics analysis of differential protein expression identifies heat shock protein 47 as a predictive marker for lymph node metastasis in patients with colorectal cancer. Int. J. Cancer 140 1425-1435 (2017).[PubMed]
228. Song X. et al. HSP47 is associated with the prognosis of laryngeal squamous cell carcinoma by inhibiting cell viability and invasion and promoting apoptosis. Oncol. Rep. 38 2444-2452 (2017).[PubMed]
229. Singh K. et al. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J. Diabetes Complications 29 578-588 (2015).[PubMed]
230. Nagata K. & YamadaK.M. Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. J. Biol. Chem. 261 7531-7536 (1986).[PubMed]
231. Nagai N. et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150 1499-1506 (2000).[PubMed]
232. Ishida Y. et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17 2346-2355 (2006).[PubMed]
233. Marutani T. YamamotoA. NagaiN. KubotaH. & NagataK. Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP. J. Cell Sci. 117 5913-5922 (2004).[PubMed]
234. Liu Z. et al. Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed. Pharmacother. 103 1262-1271 (2018).[PubMed]
235. Fu L. et al. Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J. Mol. Cell Cardiol. 89 241-250 (2015).[PubMed]
236. Kawasaki K. et al. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J. Biol. Chem. 290 3639-3646 (2015).[PubMed]
237. Sunamoto M. et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab. Invest. 78 967-972 (1998).[PubMed]
238. Thomson C.A. AtkinsonH.M. & AnanthanarayananV.S. Identification of small molecule chemical inhibitors of the collagen-specific chaperone Hsp47. J. Med. Chem. 48 1680-1684 (2005).[PubMed]
239. Katarkar A. HaldarP.K. & ChaudhuriK. De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors. Biochem. Biophys. Res. Commun. 456 707-713 (2015).[PubMed]
240. Maitra A. et al. Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: sea urchin fascin homolog and heat shock protein 47. Am. J. Clin. Pathol. 118 52-59 (2002).[PubMed]
241. Hirai K. et al. Immunohistochemical distribution of heat shock protein 47 (HSP47) in scirrhous carcinoma of the stomach. Anticancer Res. 26 71-78 (2006).[PubMed]
242. Hattori T. et al. Downregulation of a rheumatoid arthritis-related antigen (RA-A47) by ra-a47 antisense oligonucleotides induces inflammatory factors in chondrocytes. J. Cell Physiol 197 94-102 (2003).[PubMed]
243. Roderburg C. et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53 209-218 (2011).[PubMed]
244. Ito S. et al. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J. Biol. Chem. 292 20076-20085 (2017).[PubMed]
245. Sauk J.J. ColettaR.D. NorrisK. & HebertC. Binding motifs of CBP2 a potential cell surface target for carcinoma cells. J. Cell Biochem. 78 251-263 (2000).[PubMed]
246. Li D. et al. Novel adenoviral gene delivery system targeted against head and neck cancer. Laryngoscope 118 650-658 (2008).[PubMed]
247. Elias A. CraytonS.H. Warden-RothmanR. & TsourkasA. Quantitative comparison of tumor delivery for multiple targeted nanoparticles simultaneously by multiplex ICP-MS. Sci. Rep. 4 5840 (2014).[PubMed]
248. Pillai J.P. et al. In-silico analysis of heat shock protein 47 for identifying the novel therapeutic agents in the management of oral submucous fibrosis. Indian J. Dent. Res. 25 580-585 (2014).[PubMed]
249. Kaur J. et al. Co-expression of colligin and collagen in oral submucous fibrosis: plausible role in pathogenesis. Oral Oncol. 37 282-287 (2001).[PubMed]
250. Rizk F.H. et al. Heat shock protein 47 as indispensible participant in liver fibrosis: Possible protective effect of lactoferrin. IUBMB Life 70 795-805 (2018).[PubMed]
251. Tung Y.T. et al. Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation. J. Dairy Sci. 97 3281-3291 (2014).[PubMed]
252. Ali S.O. DarwishH.A. & IsmailN.A. Modulatory effects of curcumin silybin-phytosome and alpha-R-lipoic acid against thioacetamide-induced liver cirrhosis in rats. Chem. Biol. Interact. 216 26-33 (2014).[PubMed]
253. Ikeda K. et al. Resveratrol inhibits fibrogenesis and induces apoptosis in keloid fibroblasts. Wound. Repair Regen. 21 616-623 (2013).[PubMed]
254. Chen X.H. et al. Inhibitory effect of emodin on bleomycin-induced pulmonary fibrosis in mice. Clin. Exp. Pharmacol. Physiol 36 146-153 (2009).[PubMed]
255. Guan R. et al. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats. Toxicol. Lett. 262 161-172 (2016).[PubMed]
256. Algandaby M.M. et al. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators. Naunyn Schmiedebergs Arch. Pharmacol. 389 419-428 (2016).[PubMed]
257. Winter D.K. SlomanD.L. & PorcoJ.A. Jr. Polycyclic xanthone natural products: structure biological activity and chemical synthesis. Nat. Prod. Rep. 30 382-391 (2013).[PubMed]
258. Terui Y. et al. Xantholipin a novel inhibitor of HSP47 gene expression produced by Streptomyces sp. Tetrahedron Lett. 44 5427-5430 (2003).[CrossRef]
259. White N.J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41 1413-1422 (1997).[PubMed]
260. Wang C. XuanX. YaoW. HuangG. & JinJ. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats. Mol. Med. Rep. 12 1291-1297 (2015).[PubMed]
261. Lv J. BaiR. WangL. GaoJ. & ZhangH. Artesunate may inhibit liver fibrosis via the FAK/Akt/beta-catenin pathway in LX-2 cells. BMC Pharmacol. Toxicol. 19 64 (2018).[PubMed]
262. Honma S. et al. Effect of amlodipine on mouse renal interstitial fibrosis. Eur. J. Pharmacol. 780 136-141 (2016).[PubMed]
263. Honma S. et al. Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur. J. Pharmacol. 740 578-583 (2014).[PubMed]
264. Bousser M.G. et al. Rationale and design of a randomized double-blind parallel-group study of terutroban 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study. Cerebrovasc. Dis. 27 509-518 (2009).[PubMed]
265. Bousser M.G. et al. The prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study: baseline characteristics of the population. Cerebrovasc. Dis. 27 608-613 (2009).[PubMed]
266. Gelosa P. et al. Terutroban a thromboxane/prostaglandin endoperoxide receptor antagonist prevents hypertensive vascular hypertrophy and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 300 H762-H768 (2011).[PubMed]
267. Wollin L. et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 45 1434-1445 (2015).[PubMed]
268. Fletcher S.V. et al. Safety and tolerability of nintedanib for the treatment of idiopathic pulmonary fibrosis in routine UK clinical practice. ERJ. Open Res. 4 (2018).[PubMed]
269. Hughes G. ToellnerH. MorrisH. LeonardC. & ChaudhuriN. Real world experiences: pirfenidone and nintedanib are effective and well tolerated treatments for idiopathic pulmonary fibrosis. J. Clin. Med. 5 (2016).[PubMed]
270. Knüppel L. et al. A novel antifibrotic mechanism of nintedanib and pirfenidone. Inhibition of collagen fibril assembly. Am. J. Respir. Cell Mol. Biol. 57 77-90 (2017).[PubMed]
271. Chamorro A. TP receptor antagonism: a new concept in atherothrombosis and stroke prevention. Cerebrovasc. Dis. 27 Suppl 3 20-27 (2009).[PubMed]
272. Rosado E. et al. Terutroban a TP-receptor antagonist reduces portal pressure in cirrhotic rats. Hepatology 58 1424-1435 (2013).[PubMed]
273. Nakayama S. et al. Pirfenidone inhibits the expression of HSP47 in TGF-b1-stimulated human lung fibroblasts. Life Sci. 82 210-217 (2008).[PubMed]
274. Wenstrup R.J. et al. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 279 53331-53337 (2004).[PubMed]
275. Cottin V. et al. Long-term safety of pirfenidone: results of the prospective observational PASSPORT study. ERJ Open Res. 4 (2018).[PubMed]
276. Lancaster L. et al. Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: integrated analysis of cumulative data from 5 clinical trials. BMJ Open Respir. Res. 3 e000105 (2016).[PubMed]
277. King T.E.Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370 2083-2092 (2014).[PubMed]
278. Margaritopoulos G.A. et al. Pirfenidone improves survival in IPF: results from a real-life study. BMC Pulm. Med. 18 177 (2018).[PubMed]